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ABSTRACT

It is well established that errors in global travel-time models can induce large biases into event locations inferred
from regional and teleseismic arrival-time observations.  Conversely, the travel-time corrections to these models that
are estimated from calibration arrival times are affected by errors in the locations of the ground-truth events
providing the data.  This project addresses the interaction between location and calibration uncertainty in the context
of the joint location/calibration inverse problem, in which arrival time data from multiple events and stations are
used to simultaneously determine the locations of the events and calibration parameters such as 3-D velocity models
or explicit path corrections.  The project builds on and integrates mathematical and computational techniques
developed in previous projects, including a grid-search algorithm for multiple-event location, a Monte Carlo
technique for location uncertainty analysis, and a new kriging method for empirical calibration.  The ultimate goal is
a procedure for computing accurate confidence regions on the locations of new events, reflecting the observational
errors in their arrival-time data as well as the uncertainty inherited from incomplete and imperfect calibration data
sets.  This paper describes our formulation of the joint location/calibration inverse problem and the algorithm we
have developed to date for performing a fully nonlinear location/calibration uncertainty analysis in the special case
in which correction parameters comprise a simple time term for each seismic station and phase, as is often assumed
in multiple-event location methods.  We present initial applications of the algorithm to earthquake clusters in Turkey
and nuclear explosions at the Nevada Test Site, for which very precise ground-truth locations are available for
validation purposes.  The results show the expected dependence of the location confidence region for an event on the
ground-truth location constraints imposed on other events, thus confirming the concept of our new approach to event
location uncertainty.  The algorithm is computationally intensive, however, and we are investigating computational
shortcuts and approximations that yield the same results more efficiently before extending the approach to more
general parameterizations of travel-time corrections.
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OBJECTIVE

The objective of this project is to develop new mathematical and computational techniques for quantifying the errors
in seismic event locations, including the effects of observational errors and calibration errors, that is, errors in the
travel-time forward model.  Calibration errors stem from observational errors in calibration data, incomplete
geographical coverage of these data, and uncertainty in the locations of the ground-truth events providing the data.
Our goal is to take all of these error sources into account in determining the location uncertainty on new events.

Our approach to location uncertainty is formulated within the framework of the joint location/calibration inverse
problem.  In this problem, arrival time data from multiple events and stations are used to simultaneously determine
the event locations and calibration parameters, such as explicit path corrections or a 3-D velocity model.  We treat
one of the events as a new event under investigation and the remaining events as calibration events.  A complete
error analysis that considers the uncertainty in all the unknown parameters—the location of the new event, the
locations of non-GT0 calibration events, and the calibration parameters—accounts for the sources of location
uncertainty, which are the topic of this project.

We are addressing this joint inverse problem with numerical techniques that lift key limitations in previous analytic
approaches to uncertainty analysis in large inverse problems.  These limitations include the restriction to Gaussian
data errors, the necessity of using a linear approximation to the forward model, and restricted mechanisms for
incorporating a priori constraints on the unknowns.  Hard bounds on parameters, in particular, are not
accommodated in the analytical approach and these can introduce a nonlinearity to the problem that can be more
severe than the nonlinearity of the forward model.  Requiring an event location to be below the Earth's surface is an
example of such a constraint.  The primary numerical methods we are currently using to accommodate these
complexities are grid search, for finding optimal solutions for parameters, and Monte Carlo sampling, for finding
confidence regions on parameters.

Given the ability to perform a rigorous analysis of event location uncertainty, the ultimate objective of this project is
to achieve a more complete understanding of the main factors controlling the errors in seismic locations and to
identify the new information or procedures needed to reduce these errors for the purposes of improved nuclear-event
monitoring.

RESEARCH ACCOMPLISHED

Formulation of the Joint Inverse Problem

We state our formulation of the joint location/calibration inverse problem for a data set comprising the arrival times
of n seismic station/phase combinations (e.g. phase Pn at station MNV) observed from a subset of m seismic events.
Let dij denote the observation for the ith event and jth station/phase (i,jth path).  Then the joint event
location/seismic calibration inverse problem can be written as

dij = ti + Tj(xi) + cij + eij                                                                        (1)

where ti and xi are origin parameters (time and hypocenter, respectively) of the ith event; Tj is a model-based travel-
time function for the jth station/phase; cij is a correction to this function; and eij is an observational error.  This
equation holds only for the paths i, j for which data have been observed.

The unknown parameters of this joint location/calibration inverse problem are the event hypocenters and origin
times, xi, ti, i = 1,…,m, and the path travel-time corrections cij.  The problem becomes one of purely calibration when
the event parameters are assumed known, and one of purely location when the path corrections are known.  In
practice, neither set of parameters is completely known or unknown.  Two difficult aspects of nuclear monitoring, in
fact, fall within the general formulation.  The first is how to account for uncertainty in a seismic calibration (errors
in estimates of cij) when the calibration events have imperfectly known locations, i.e. ground-truth (GT) levels
greater than zero.  The second is how the location error of any particular event is affected by imperfect knowledge of
the path corrections.  These difficult questions are addressed by a complete uncertainty analysis in the joint
location/calibration problem.
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Parameterization of path corrections

The joint inverse problem is hopelessly ill-posed if the path corrections cij are not constrained via prior information
or a parameterization that reduces the number of independent unknowns, or both. The exact nature of the inverse
problem depends on how this is done.

In the “basic” multiple-event location problem, relevant to small event clusters, the path corrections are assumed to
be event-independent, i.e.

cij = aj. (2)

The calibration parameters comprise a time term, aj, for each station/phase pair in the data set.  This problem has
been treated by several workers (e.g. Jordan and Sverdrup, 1981; Pavlis and Booker, 1983) and it is the focus of this
paper.  However, our formulation pertains to other ways of parameterizing path corrections that will be addressed
later in the project.  One is with correction functions (or surfaces), whereby

cij = aj (xi). (3)

Here, there is an unknown function, aj (x), assigned to each station/phase.  Another is the universal parameter
function described by Rodi et al. (2003).  Spatial functions contain many more degrees of freedom than simple time
terms and it is necessary to provide prior information on their smoothness, such as with geo-statistical constraints
(e.g. Schultz et al., 1998), to make the inverse problem well posed.  Our formulation also includes the problem of
earthquake tomography (joint location/velocity determination; e.g. Spencer and Gubbins, 1980) as a special case.
Path corrections are then parameterized by the Earth's velocity function and the cij are integrations of this function
over ray paths.

Maximum-likelihood formulation

Our approach to inverse problems and uncertainty analysis is based on likelihood functions.  A likelihood function is
a function of the unknown parameters whose purpose is to quantify how well any given values for the parameters
agree with the observed data.  An optimal estimate of the unknown parameters (the maximum-likelihood estimate)
can be taken as those parameter values that maximize the likelihood function.  A confidence region on the
parameters is the collection of parameter values whose likelihood is within some tolerance of the maximum
likelihood.

A given assumption about the probability distribution of the data errors defines a particular likelihood function for
the parameters.  In our work thus far we have assumed that the observational (picking) errors, eij, are statistically
independent and that each has a generalized Gaussian probability distribution of order p (Billings et al., 1994).  For
the small-cluster problem (cij = aj), this error model implies a likelihood function, L, given by

      

€ 

− log L = const + logσ ij +
1
pij

∑ 1

σ ij( )
p

ij
∑ dij − ti −Tj x i( ) − aj

p
. (4)

In this paper we will assume the data standard errors, σij, are known a priori.  The task of maximizing the likelihood
is then equivalent to minimizing an Lp norm (to the pth power) of the data residuals, as given by the last term of
equation (4).  The case of Gaussian errors coincides with p = 2 and maximization of the likelihood function with
respect to the problem unknowns (event locations and time terms) becomes a problem of nonlinear least squares.

In previous projects we have developed an algorithm called GMEL (grid-search multiple-event location) for
maximizing the likelihood function in equation (4).  The algorithm is described in Rodi et al. (2002).  GMEL solves
jointly for the location parameters of the events, xi and ti, and the travel-time correction terms of the station/phase
combinations, aj.  It accepts prior constraints on all the parameters in the form of prior bounds.  A prescribed lower
and upper bound is allowed on each event origin time ti, event depth zi, and travel-time correction, aj (e.g.

    

€ 

aj
min ≤ aj ≤ aj

max).  Bounds on an event epicenter take the form of a maximum epicentral distance from a specified

geographic point.  The GMEL algorithm iterates over alternating loops over events, to update event locations with
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station/phase terms fixed, and over station/phase pairs, to update their correction terms with the event locations
fixed.  Grid search is used to find the optimal event locations.

Location Confidence Regions in the Joint Inverse Problem

Our formulation of uncertainty analysis in the joint location/calibration (or multiple-event location) inverse problem
extends the formulation we developed for the single-event location problem (Rodi and Toksöz, 2001).  The same
principles are applied, but to a problem with many more parameters.

Our approach is to address the uncertainty in a subset of the unknown parameters, which we denote as a vector p,
considering their trade-off with the remaining “hidden” parameters, q.  For example, p may be the hypocenter of one
of the events, say the first event (p = x1).  In single-event location, q would then be simply the origin time of the
event (q = (t1)).  In the multiple-event location problem, however, q includes this plus all the other event locations
and the travel-time corrections:

q = (t1, x2, t2,…, xm, tm, a1, a2,…,an). (5)

To address the uncertainty in the epicenter of event 1, as another example, we would move its depth, zi, from p to q.

For single-event location, Flinn (1965) developed the methodology for hypocentral confidence regions for the case
of Gaussian data errors (p = 2) and no parameter constraints, and using a linear approximation to the travel-time
functions, Tj.  His method can be formulated in terms of hypothesis testing using a likelihood ratio as the test
statistic.  Doing so allows us to define confidence regions under less restrictive assumptions and for the multiple-
event problem.

In the multiple-event problem, let d denote the vector of arrival time data (dij for the observed ij pairs), and write the
likelihood function as L(p, q; d).  We will denote the prior parameter constraints as sets P and Q, which contain the
admissible values of p and q, respectively (e.g., for p = x1, the below-surface constraint yields P = {(θ1, φ1, z1) | z1 ≥ 0},
where θ and φ are epicentral coordinates).  A confidence region on p is defined in terms of a likelihood ratio test
statistic, τ(p, d), which compares the likelihoods that are achieved with p fixed to a particular value and with p free to
vary within P.  Thus

        

€ 

τ (p,d) = log max
′ p ∈P
′ q ∈Q

L( ′ p ,q;d) − log max
q∈Q

L(p,q;d). (6)

Given a confidence level β, we can reject p at that level if τ(p, d) is greater than some critical value, τβ.  This critical
value is determined by the probability distribution of τ(p, d), as induced by the errors in d.  If p is not rejected, it is
inside the confidence region for the specified confidence level.  That is, the confidence region comprises the
parameter vectors p satisfying

τ(p, d) ≤ τβ. (7)

In Gaussian/linear inverse problems (“linear'” means the Tj are linear and hard parameter constraints are not used),
with the additional assumption that the standard errors (σij) are known, τ (actually 2τ) is chi-squared distributed with
the number of degrees of freedom being the number of parameters in p (e.g., 2 for epicentral confidence regions).
Thus, τβ is easily determined from tables of the chi-squared cumulative distribution function.  Furthermore, in the
Gaussian/linear case, the dependence of τ on p is quadratic.  Therefore, the locus of points p satisfying equation (7)
fill a hyper-ellipsoid whose axis lengths and orientations are easily found.  With our more general assumptions (non-
Gaussian errors, or nonlinear forward model or parameter constraints), τ does not necessarily have a well-known
probability distribution and the geometry of a confidence region cannot be found with analytic formulas.  Therefore,
we use numerical techniques to find τβ  and the values of p that satisfy equation (7).

Confidence Region Algorithm

Our confidence region algorithm is a two-step procedure.  We describe it for the case where p is the hypocenter, x,
of one of the events, and where a single value of β is of interest (e.g. β = 90%).  The steps are

26th Seismic Research Review - Trends in Nuclear Explosion Monitoring

310



1. Compute τ(x, d) at points x on a dense 3-D hypocenter grid.  This entails maximizing L with respect to the
hidden parameters (q) for each x  on the grid.

2. Perform a Monte Carlo simulation to find τβ.  This entails computing τ(xtru, dsyn) for an assumed “true”
hypocenter xtru and true hidden parameters qtru, and many realizations of synthetic data, dsyn.

In step 2, each realization dsyn is constructed by adding a realization of pseudo-random errors to arrival times
calculated for (xtru, qtru):

dsyn = F(xtru, qtru) + esyn (8)

where F denotes the arrival time forward model and esyn is the pseudo-random noise vector (comprising the eij).  The
computation of τ(xtru, dsyn) requires that each realization of the synthetic data be used in two likelihood maximizations:
one with x = xtru and one with x free to vary within its admissible region (X).  Both maximizations vary q ∈ Q.

In our current implementation of this algorithm, we take xtru and qtru to be their maximum-likelihood values for the
real data.  The method then coincides with a statistical method called parametric bootstrapping (e.g. Hall, 1992).

Both steps of this procedure maximize the likelihood function many times.  In step 1 (likelihood sampling) L is
maximized for all hypocenters on a 3-D grid, but only for the real data.  The second step (Monte Carlo simulation)
entails maximizing L twice, with x fixed and free, for each of many realizations of synthetic data.  (We have found
that ~300 realizations of synthetic data yield stable results if β is not too close to 1.)  In the single-event problem,
maximizing L is a fast procedure and a confidence region can be computed with a few seconds of CPU time.  In
multiple-event location, each maximization of L is an invocation of the GMEL algorithm to solve for multiple event
and station parameters.  Even for epicentral confidence regions, with event depths assumed known (implying a 2-D
sampling grid in step 1), each step of the procedure can require on the order of one hour of CPU time (on a 2.4 GHz
Xeon processor), depending on the denseness of the epicenter sampling grid and the number of Monte Carlo
realizations.

Other workers in event location uncertainty (c.f. Wilcock and Toomey, 1991) have used analytical values of τβ in
calculating location confidence regions, even while sampling the likelihood function (our algorithm step 1) to avoid
linearization of the forward problem.  Doing so avoids step 2 of our algorithm.  For single-event location, we have
performed numerical experiments with real and synthetic data to test the accuracy of analytical critical statistic
values, in the case of Gaussian errors.  We discovered that bounds on the target parameters p (e.g. depth bounds
when computing hypocentral confidence regions) can lead to significant errors in the analytical τβ.  However, the
experiments also showed that τβ  is not sensitive to the constraints on the hidden parameters, q.  For example, the
statistic for an epicentral confidence region did not depend on whether or how strongly the focal depth was
constrained.

This fact suggests a way to tremendously speed up the Monte Carlo simulation in the multiple-event problem: by
fixing the locations of the calibration events (which are parameters in q).  In effect, single-event location is
performed on each realization of synthetic data.  We used this approximation in the applications below.  We point
out that the calibration events cannot be fixed for step 1 of the procedure, for doing so would ignore important trade-
offs between the parameters in p and q.

Application to the Izmit Earthquake Sequence

Rodi and Toksöz (2003) presented some preliminary tests of our multiple-event uncertainty approach applied to the
17 August 1999 Izmit, Turkey, earthquake sequence.  These tests demonstrated the concept of the approach but
revealed its computational difficulties.  Here we present updated results for this data set, using finer sampling grids
and more Monte Carlo realizations.  The new results employ the approximation of fixing calibration event locations
in the Monte Carlo simulation, as described in the previous section.

The data set previously used contains 3484 Pn and teleseismic P arrival times from 643 stations from the National
Earthquake Information Center (NEIC), which we obtained from the IASPEI Working Group on Multiple-Event
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Location, courtesy of R. Engdahl and E. Bergman.  For the new tests we winnowed the data set by eliminating
station/phase pairs having fewer than 3 events.  The winnowed data subset comprises 3083 Pn or P arrivals from 373
stations (387 station/phase combinations) from 34 events (the Izmit mainshock and 33 aftershocks).

Figure 1.  Top left: Single-event epicentral confidence regions (at 90, 95 and 98% confidence; blue, green and
red, respectively) for a well-recorded aftershock of the 1999 Izmit Turkey earthquake (135 defining
phases).  Station travel-time corrections were assumed to be known.  Top right and bottom left/right:
Multiple-event confidence regions for the same event.  Top right: computed with the Izmit mainshock
constrained as a GT0 event.  Bottom left: with the Izmit mainshock constrained as a GT5 event.
Bottom right: with the Izmit mainshock as a GT10 event.  In each frame, the black circle marks the
maximum-likelihood (GMEL) solution for the aftershock and the white circle is a GT5 local network
solution for the event (Engdahl and Bergman, private communication).  The ellipse is the analytic,
single-event 90% confidence ellipse on the aftershock.

We show confidence regions on two of the Izmit aftershocks.  One is a well-recorded aftershock occurring on 31
August 1999, and has 135 defining phases in the winnowed data set (compared to 283 defining phases for the Izmit
mainshock).  The other is a poorly recorded aftershock on 26 August 1999 having 17 defining phases.  Only
epicentral confidence regions were calculated with depths fixed to values found by Engdahl and Bergman (2001).
For both aftershocks, the Izmit mainshock was treated as a ground-truth calibration event.  Its prior location was set
to the solution from a local seismic network and is estimated to be of GT5 accuracy.  In our tests, however, we
assumed various GT levels of the mainshock.  The other 32 “calibration” events were unconstrained.  In all cases,
picking errors were assumed to be Gaussian with a standard deviation of 0.622 sec.  The AK135 travel-time tables
were used for the forward model in all cases.

Figure 1 shows the confidence regions for the well-recorded aftershock.  The top/left frame shows single-event
confidence regions (at three confidence levels) found with our numerical approach.  These assume the travel-time
corrections are known exactly, making the calibration events irrelevant.  The other three frames show multiple-event
confidence regions, i.e. the corrections are assumed to be unknown and are only constrained by the calibration
events with some degree of uncertainty.  The multiple-event confidence regions were computed under the
assumptions, respectively, that the Izmit mainshock was a GT0 event (upper right frame), a GT5 event (lower left)
and GT10 event (lower right).  In each frame, the maximum-likelihood location for the aftershock is compared to a
GT5 local seismic solution that was available for the aftershock.  Figure 2 shows the analogous computations for the
poorly recorded aftershock.
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Figure 2.  Same as Figure 1 but for a poorly recorded aftershock of the Izmit earthquake (17 defining
phases).

The confidence regions in both figures show the behavior we expect.  When the uncertainty in travel-time
corrections is ignored (top left frames) the confidence regions are comparable to the confidence ellipses computed
with the conventional Gaussian/linear formula (shown only for β = 90%).  When the uncertainty in corrections is
accounted for (top right) the confidence regions are larger.  When the GT level of the Izmit mainshock is increased
(bottom frames) the regions become accordingly larger still.  In the case of the well-recorded aftershock (Figure 1)
only the bottom confidence regions, accounting for the location error in the one GT event, contain the local network
solution.

Figure 3.  Epicenter confidence regions for a Rainier Mesa explosion determined from 6 Pn arrival times.
Left: Single-event confidence regions (at 90, 95 and 98% confidence), computed with path travel-time
corrections assumed known.  Center/Right: Multiple-event confidence regions for the same event,
allowing for the uncertainty in path corrections.  Center: computed with one well-recorded Rainier
Mesa explosion (22 Pn arrivals) constrained to be a GT0 event.  Right: with the same explosion
constrained as a GT2 event.  All other events were unconstrained.  In each frame the black circle
marks the maximum-likelihood solution for the event and the white circle is its GT0 location (from
Walter et al., 2003).  The ellipse in each frame is the analytic, single-event 90% confidence ellipse on
the event location.
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Application to NTS Explosions

We have also tested our new error analysis technique on a data set from NTS explosions that has been assembled by
Lawrence Livermore National Laboratory (LLNL) (Walter et al., 2003).  The data set comprises 74 nuclear
explosions with known locations and origin times recorded at a network of regional and local stations.  The
examples here use only a subset of the Pn picks from the data set, selected under the following criteria.  First,
arrivals from two stations (TPH and DAC) that are within 1.5° of most of the explosions were excluded, leaving
only stations at greater distances.  Of the remaining data set, events with fewer than 4 arrivals and stations with
fewer than 2 arrivals were removed.  The resulting subset comprises 548 arrivals from 71 events and 38 stations.
IASP91 travel-time tables were used for the forward model.  Picking errors were assumed to have a standard
deviation of 0.324 sec.

The examples here follow the schema of the Izmit examples shown above.  One NTS explosion was chosen as a
ground-truth calibration event with finite GT level: GT0 or GT2 this time.  This event was a Rainier Mesa explosion
with 20 Pn arrivals.  Several other events were treated, in turn, as new events to be located.  The remaining 69
explosions in the winnowed data set were treated as calibration events with unconstrained locations.

Figures 3–6 show confidence regions on four of the explosions that have relatively few arrivals: one each from the
Rainier Mesa and Pahute Mesa test areas and two from Yucca Flat.  We see the same behavior of confidence regions
as in the Izmit examples, with the regions growing as the uncertainty in travel-time corrections and the finite
location accuracy of the GT calibration event are accounted for.  We point out that the Rainier Mesa explosion was
constrained with its GT0 location.  Therefore, the confidence regions in the center frame of each figure should cover
the GT0 location shown for the target event.  In three of four cases, the GT0 location is near the edge of the
confidence region and for one of the Yucca explosions it is decidedly outside the confidence region.  Further study
is needed to determine why this is the case, but a possible explanation is the inadequacy of a simple time-term
parameterization of travel-time corrections.

Figure 4.  Epicenter confidence regions for a Pahute Mesa explosion determined from 6 Pn arrival times.  See
Figure 3 for explanation of the different frames and conventions.

Figure 5.  Epicenter confidence regions for a Yucca Flat explosion determined from 7 Pn arrival times.  See
Figure 3 for explanation of the different frames and conventions.
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Figure 6.  Epicenter confidence regions for a Yucca Flat explosion determined from 8 Pn arrival times.  See
Figure 3 for explanation of the different frames and conventions.

CONCLUSIONS AND RECOMMENDATIONS

We have developed a general theoretical and computational framework for characterizing the uncertainty in seismic
event locations in the context of the joint inverse problem of multiple-event location and travel-time calibration.
The approach accounts for complexities such as nonlinear forward models and parameter constraints and the finite
accuracy of calibration event locations, which create significant difficulties for analytic methods of uncertainty
analysis.  We have implemented the approach for the basic multiple-event location problem with time-term
corrections, and begun testing it with earthquake and explosion data sets.  The results to date have validated the
approach qualitatively but it awaits quantitative validation.  We have made some significant inroads in improving
the computational efficiency of the method.  However, more improvement is needed for the method to be a tool of
routine analysis, and if it is to be practical with more complex parameterizations of travel-time corrections.
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