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ABSTRACT

Integrating or fusing array data from various sources will be extremely important in making the best use
of networks for detecting infrasonic signals and for estimating their velocities and azimuths. In addition,
studying the size and shape of location ellipses that use velocity, azimuth and travel time information from
an integrated collection of small arrays to locate the event will be critical in evaluating our overall capability
for monitoring a CTBT.

In the first phase of this study, we have developed a small-array theory that characterizes the uncertainty in
estimated velocities and azimuths for different infrasonic array configurations and levels of signal correlation.
The performance of simple beam forming and a generalized likelihood beam that is optimal under signal
correlation have been compared. Empirical work to establish plausible signal frequencies and coherence levels
for small arrays has concentrated on several events in the Pacific.

The second phase of the study develops statistical methods for integrating information from a collection of
small arrays in order to obtain unified estimators for the location of an event as well as the predictive region
that best characterizes location uncertainty. We derive optimal methods based on a nonlinear Bayesian
approach to combining wavenumber parameters and their uncertainties into an uncertainty ellipse for the
location. The methodology is capable of combining uncertainties for the overall input variances with observed
data from small arrays to get posterior predictive regions for locations. Several contrived examples are used
to compute ellipses that might be expected from a typical set of small infrasonic arrays.

Key Words: Detection, Location, Infrasound, Multiple array processing, Nonlinear estimation, Bayesian
methods
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OBJECTIVES

The first phase of this study focused on completely characterizing the statistical detection and estimation
capabilities of small infrasonic arrays, as contemplated by the Prototype International Data Centre (PIDC).
For a multivariate correlated signal model, we developed the statistical approaches for (i) maximum likelihood
detection, (ii) estimation of velocity and azimuth parameters, (iii) estimation of noise spectra and the
signal spectral matrix and (iv) performance of various array configurations. Applications of the results to
several events, coupled with theoretical calculations based on the Mack-Flinn distance-coherence model, gave
predicted azimuthal standard deviations ranging from 1 to 5 degrees, depending on the center frequency of
the signal, array configuration and signal to noise ratio. Summaries of the results obtained can be found in
Shumway and Kim (1998) and in Shumway et al (1999).

In the second phase of this study, we are examining the implications that the results of the first phase
have for location uncertainty using estimated wave-number parameters from more than one array. In general,
there may be a small number of arrays that detect any given event and we look at different methods for
estimating the uncertainty of locations derived from these kinds of data. The results take wave-number
coordinates from multiple arrays and combine or fuse them into an overall location for the common event
and obtain an associated uncertainty region for the location. As has been observed by numerous authors,
the assumptions made about the variances of the observed errors in estimated wave-numbers or travel times
will influence the size of the uncertainty region. In this analysis, we focus on three assumptions regarding
the unknown variances, namely that they are (A) known exactly (Evernden, 1969), (B) completely unknown
(Flinn, 1965) and (C) subject to a prior distribution (Jordan and Sverdrup, 1981, Bratt and Bache, 1988).
We give several examples involving small arrays and an event location similar to what might be expected
from a subset of arrays recording an event on the proposed PIDC network of infrasonic stations .

RESEARCH ACCOMPLISHED

MoODEL DEVELOPMENT

In the case of an infrasonic array, it is convenient to assume that observed data at sensor j = 1,2,..., N for
array k = 1,2,...,n records
yjk(t) = sjk(t — Tjk) + 'n,jk(t) 1)
as signal plus noise, where the time delays
r. 0%
Tiw(8) = —2— 2

depend on the array coordinates rjx = (rjk1,7jk2)’ and a wave-number vector 8y = (61x,82)' and v is the
center frequency. It should be noted that the wave-numbers can be related to the velocity and azimuth of
the propagating signal that is of interest (see Shumway et al, 1999) . We will not express the equations here
in those terms but will simply note that @; = 8 (z) is related to the event location z = (z1,z2)' through

_ V(-1
Or(z) = V @) (3)

where ¢x = (c1x,c2x)' denotes the coordinates of the center of the k'* array and V is the velocity of the
signal with v and V generally taken as being fixed and known. The signs of the two components of 0:(z)
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change, depending on where the event is located relative to the center coordinates of the array. The distance
term in the denominator is obviously also a function of the location, given by

di(z) = ljex — = (4)
There will usually be estimators available for the n wave-number vectors, say 91,92, e ,@n, available
from each of the n arrays, along with the asymptotic covariance matrices, say Zx,k = 1,...,n. These have

been determined in Shumway et al (1999) for both beam-forming and correlated beam-forming frequency
wave-number estimators.

In order to give a concrete example, consider the three arrays in Figure 1, with centers at ¢; = (0,0)',¢; =
(0,-1000)',c; = (—1000,0)’, observing an hypothetical event at £ = (2366, —2366)', with all distances
measured in km.

500 T T T T T
Array 1
or * *
Array 2
-500 1
~1000 - * B
Array 3
~1500 1
~2000 - 4
Event
*
_2500 L 1 1 1 L
-2500 -2000 ~1500 -1000 -500 0 500

Figure 1: Hypothetical array centers for location example

Each of the arrays, centered at their respective values, will generate an estimator for the wave-number
parameters relative to the event. Since this particular event is in the third quadrant for all of the arrays the
coefficients of the two components of (3) will all be negative. In this case, the location is z = (—2366, —2366)’
and the true wave-numbers become are 8 (x) = (—.0733, —.1270)', @>(z) = (—.1037,-.1037)" and 03(z) =
(~.1270, —.0733)', as can be computed from (3), with v = .044 Hz and V' = .3 km/sec.

The above discussion suggests that we might assume a model for the estimated wave-number vectors that
takes the form A
0r = Ok (z) +ex (5)
where the errors are assumed to have 2 x 2 covariance matrices of the form

cov e = a2Zk, (6)
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and o2 denctes the variance parameter. The problem is to estimate the location vector, given a sample
of 2 x 1 wave-number estimators 61, . ..,0, and the covariance matrices Iy, ..., %n. The model (5) is is
nonlinear in the location parameter vector = because of (3) and (4).

It should be noted, at this point, that travel times may also be known from considerations apart from the
wave-number estimation methodology discussed in Shumway et al (1999). For example, travel times may also
be determined by cross correlating elements in the array, using onset times read by an analyst or monitoring
the ratio of short-term to long-term mean squares. While such information cannot be completely independent
of the wavenumber analysis, it may present a more global solution in the sense that the observations do not
depend on focusing on a given frequency band. If such estimated travel times are available, the model in (5)

might be augmented by one expressing the estimated travel times , say %i,...,%, in a form analgous to (5)
where di ()
k(T
t =
w(#) = —; (7

is again a nonlinear function of the location vector z.

WAVE-NUMBER ESTIMATION AND UNCERTAINTY

Shumway et al (1999) have investigated optimal detection and estimation of the wave-number vector and
its uncertainty. They develop the F-statistic for detection under perfect signal correlation and a generalized
beam for detection when the signal correlation degrades with distance. Under the model given in (1) and

(2), they obtain the maximum likelihood estimators of the wave-number vector, say #. The asymptotic
covariance matrix, in the case of beamforming and perfect signal correlation, is given by

1 1r r
Y ———e—|14+ —|R!

2202 LN ( + N) ®)
where N is the array size, L is the number of frequencies smoothed for the detector (time-bandwidth product),
R is the covariance matrix of the array coordinates and r is inverse of the signal to noise ratio.

The estimated wave-numbers from n arrays, say 91, e ,9n and their asymptotic covariance matrices,
%1,..., 5, serve as natural inputs for the fused locations given in the next section.

FUSED LOCATIONS: CLASSICAL AND BAYESIAN METHODS

We extend the classical methods first to the case where we observe wave-number parameters and their
covariance matrix from n arrays and wish to combine or fuse the information into an overall lcoation. The
nonlinear model (5) can be treated in the usual way. That is, expand 8x(z) around some initial value, say
z = xo and write a linearization as

0 — 81 (z0) = Ar(To)(z — Zo) + ek, 9)
where 90, (<)
— kAT

Ax(z) = oz (10)

is the usual 2 x 2 matrix of partial derivatives of 8x(z). Then, stacking the n, 2 x 1 wave-number vectors
and minimizing the weighted sum of squared errors can be done by sucessively estimating 8 = z — Zo. This
leads to

n

& =50+ C 7 (z0) Y Ax(®0)' Ti (Bx — Ox(z0)), (D
k=1

178



21st Seismic Research Symposium

where "
Clmo) =Y Ak(z0)' Ty Ax(zo). (12)
k=1

It follows that the approximate covariance matrix of the final estimator is
cov & = c2C~(%). (13)

Equations (10) and (11) exhibit the fusion estimators at each stage as pooled estimators over the n arrays
as long as the variances are known. We may also develop a confidence ellipse for the fusion estimators under
assumptions (A), (B) and (C) mentioned earlier.

(A) Variance Known: We may assume that the variance o2 is known, either from the statistical variances
of the computed wave-number estimators or from a combination of factors including the statistical
wave-number variances. In this case, the generalization of the usual chi-squared ellipse considered by
Evernden (1969) can be computed from the fact that

(z - 2)'C&)(z - 2) ~ o*x3, (14)

where ~ denotes is distributed as and x2 denotes a chi-squared distribution with 2 degrees of freedom.
Note that the statistical uncertainty of the wave-number estimators is already in the matrix ¥y so that
a plausible estimator for o? in the absence of other factors might by unity.

(B) Variance Unknown: If variances are known only up to the constant o?, it must be estimated. are
completely unknown and must be determined from the small-array data. For the Gaussian case, the
maximum likelihood estimator is proportional to the unbiased estimator

# = g L0 - 0u6) 5 (0~ 04(0). (15)
k=1

This case, originally considered in Flinn(1965), leads to a confidence interval based on the F-distribution,

namely
(z — 2)/C(@)(x — &) ~ 25 Fy p(n1), (16)

where Fj g(n—1) denotes the F-distribution with 2 and 2(n — 1) degrees of freedom.

(C) Variance Subject to Prior Distribution: It is often the case that it is unrealistic to assume that
the variance is known exactly because (14) becomes too small. For a small number of arrays, the ellipse
based on the F-statistic (16) is often much too large. A useful compromise, introduced by Jordan and
Sverdrup (1981)and continued by Bratt and Bache (1988), is to quantify the initial uncertainty about
o2 by assigning it a prior distribution with density function n(0?). It is convenient to use the inverted
chi-squared distribution with parameters m, representing the equivalent sample size embodied in the
prior information and o2, representing a prior centering value for the variance. For the form of the
density function, see Anderson (1984). Figure 2 plots the density function for the standard deviation
o for a5 = .02 and m = 10,30. We note that the two values put the standard deviation between .01
and .05 for m = 10 and between .015 and .03 for m = 30 For a fully Bayesian approach, we assume a
non-informative prior on (—oo < z;,z2 < 00) for the location z and compute the posterior distribution,
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given the wave-number observations, as a bivariate t-distribution with 2 and 2(n — 1) + m degrees of
freedom. The posterior estimator for the variance is
n  2n—1)s% +ma?

T T 2m-D+m (7)

implying that the best approach is simply to pool the initial variance of and the sample variance
52, weighted by their degrees of freedom. The quadratic form involving the location vector z in the
multivariate t has an F-distribution, making the 95% posterior probability ellipse for the location
expressible as

(z - 2)'C(&)(z - &) ~ 20” Fy5(n_1)4m (18)

It is interesting that the form of the posterior probability ellipse (18) is similar to (16) but will be
tighter because of the additional degrees of freedom for the F-statistic. Hence, the Bayesian solution
represents a compromise between (14) and (16), the methods of (A) and (B).

Prior Distribution of Std. Dev.

. " L L
0.01 0.015 0.02 0.025 003 0.035 0.04 0.045 0.05

Figure 2: Possible prior distributions for standard deviation of wavenumber estimates

PRELIMINARY DATA ANALYSIS

We illustrate some of the potential of the equations derived in the previous section with the contrived array
given in Figure 1. We consider two possible configurations of recording arrays, namely all three arrays
recording or only the two arrays centered at ¢; = (0,0)' and ¢3 = (0,—1000)' recording. This gives a
comparison between a wider and more narrow aperture.

The known location of the event in question was taken to be z = (—2360, —2360), as shown in Figure 1.
The wavenumber estimates were simulated by computing @ form (3) and adding random noise, according
to (5), with the covariance matrix as computed from (8) . The array was assumed to have N = 4 elements
arranged in a triangle with 1 km sides and a center element. The signal to noise ratio was taken as 3 and
the degrees of freedom as L = 17. Locations were computed using the random inputs and a covariance
matrix computed from (8). Ten Gauss-Newton iterations were performed using the approach in (9)-(12)
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The overall performance of subsets of arrays recording various events within this region is being studied
using simulated data and reasonable expected performance parameters for infrasonic arrays

Finally, it has been found that the locations are susceptible to perturbations in the derivatives involved
in the nonlinear methodology implied by Equations (9)-(12). The Bayesian approach may be helpful in this
context. Note that, in the Bayesian approach, we assume that ) is normally distributed with mean 8 (z)
where the distribution is conditional on z and o2, which are jointly distributed as a uniform and inverted
chi-squared distribution respectively. The posterior distribution of the location z, conditional on the data 0
will be of the form

P(zldy,...,0,) o« [Q(z)]~(mH2m)/2 (19)
where n
Qz) =Y (bx — 0k(x)) T (B — 6x(x)) (20)
k=1

Then, whether (19) is regarded as a posterior distribution in the Bayesian sense or an integrated likelihood,
in the sense of Berger et al (1999), we seek £ as the minimizer of the quadratic form Q(z}. This is exactly the
objective function considered in the conventional approach using (11). Expanding Q(z) about the resulting
minimizer # leads to the same solution. However, it may be possible to develop a derivative-free approach
to treating the nonlinearity of 6 (x) using resampling techniques and we are looking at this possibility in
the sequel.
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to get the final estimated locations, which turned out to be & = (—2330,—2344)' for the full array and
£ = (—2233, -2282)' for the reduced array.

-2000 T T T T T T T T T
-2050 R
Location Using 3 Arrays
2100+ .
2150 .
~2200 T
-2250 T
F(.95)
-2300 ‘
-2350 Event

—2400 4

-24501 g

_2500 ' 1 1 L ' I 1 ! L
2500 -2450 -2400 -2350 -2300 -2250 -2200 -2150 -2100 -2050 -2000

Figure 3: Location of hypothetical event at (-2366,-2366) using all three arrays in Figure 1

Figures 3 and 4 show the confidence ellipses, computed by methods (A) and (B), with the smaller ellipse
being the chi-squared ellipse with known variance. Depending on the prior assumptions as to the distribution
of the variance, the Bayesian posterior probability ellipse would like somewhere between the chi-squared and
F ellipses. The contrived example gives an idea as to the relative sizes of the ellipses expected under different
variance assumptions and under the different array configurations. Note that the case where only two arrays
recorded gives a much larger ellipse and that both ellipses reflect the fact that the observing arrays had a
relatively narrow aperture (30 degrees for n =3 and 15 degrees for n = 2).

CONCLUSIONS AND RECOMMENDATIONS

The detection and location of events depends on a number of parameters that can be varied to develop plau-
sible performance measures for different configurations of recording arrays and event locations . Optimum
detection and estimation of wave-number parameters, including velocity and azimuth, and the uncertainty of
such estimators has been covered during the first year of this contract and appears in Shumway et al (1999).
In the present phase of the study , we have developed expressions for the location and its uncertainty using
an optimum fusion of wave-number parameters from an arbitrary configuration of recording arrays. These
estimators and uncertainty regions, given in the previous section, allow us to compute the expected perfor-
mance as a function of the configurations of both the small recording arrays and the geometry of the multiple
arrays recording the event.
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Figure 4: Location of hypothetical event at (-2366,-2366) using two arrays (0,0) and (0,-1000) Figure 1
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Figure 5: A subset of infrasonic arrays planned for the Prototype International Data Center

However, our primary focus is to characterize the location performance of combinations of infrasonic
arrays in the PIDC network. Figure 5 shows a small area and the locations of arrays planned for that area.
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